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Abstract
In this paper we present a quantum logic circuit which can be used for the
experimental demonstration of a three-qubit solid state quantum computer based
on a recent proposal of optically driven quantum logic gates. In these gates,
the entanglement of randomly placed electron spin qubits is manipulated by
optical excitation of control electrons. The circuit we describe solves the
Deutsch problem with an improved algorithm called the refined Deutsch–Jozsa
algorithm. We show that it is possible to select optical pulses that solve the
Deutsch problem correctly, and do so without losing quantum information to
the control electrons, even though the gate parameters vary substantially from
one gate to another.

1. Introduction

In recent years, many different physical systems have been proposed to implement a quantum
computer. However, the task of building a large-scale quantum computer is still unresolved.
The problems are of two sorts: those relating to the hardware available for quantum operations,
and those associated with the algorithms and their implementation as sequences of controlled
manipulations. As regards hardware, given the substantial expertise acquired from the
research area of microelectronics and because quantum information processors will need to
be integrated within classical digital microelectronics, localized spins in solids, or, specifically,
in semiconductors, appear as promising candidates [1]. Contrary to previous schemes [2],
which used metallic gate electrodes and required very low operational temperatures in order
to avoid the ionization of defects close to the gates, in this work we analyse the potential of
a scheme which avoids electrodes on the chip and may be able to work at liquid nitrogen
or even near room temperature [1, 3]. In this scheme, qubits are carried by electron spins
of randomly placed deep donors, for example two particles A and B, with spacing between
them large enough to have small ground-state interactions. However, the qubits can be made
to interact by the controlled optical excitation of a ‘control’ electron from a nearby control
particle C into a molecular state of A and B. In terms of their wavefunctions, the system is
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Figure 1. Particles A and B are separated by a distance large enough for their wavefunctions WA and
WB not to interact. When the control electron on C is excited by an optical pulse, its wavefunction
WCE overlaps with WA and WB, allowing them to interact [1].

schematically shown in figure 1 [1]. The interaction between the qubits is, therefore, switched
on by the excitation of the control electron through an optical pulse and switched off again
by the transmission of a second optical pulse which de-excites the control electron back to its
ground-state. For simplicity, we will refer to these gates as to SFG gates (from the initials of
the authors of this quantum logic gate scheme [1]) in the remainder of this paper. We shall
discuss the sequence of optical pulses that would be needed to implement a specific algorithm
on a quantum computer based on SFG gates. In analysing the potential of these two-qubit
quantum logic gates, we examine a quantum logic circuit suitable to demonstrate a three-qubit
quantum computer prototype. In particular, we shall demonstrate that sensible pulse sequences
could be devised to implement the refined Deutsch–Jozsa algorithm presented in [4]. This is an
improved version of the algorithm which solves the Deutsch problem on n bits using a quantum
register of n qubits as opposed to the original version presented by Deutsch and Jozsa [5, 6]
which required n + 1.

The algorithm is based on a mathematical problem which, because of its flexibility (it can
be implemented for any number of qubits), has been used for the experimental demonstration of
many quantum computer prototypes [7–9]. We shall analyse the physical parameters which lead
to good approximations of controlled phase gates [10], a convenient gate for the implementation
of the Deutsch–Jozsa algorithm. As a further test, we use numerical simulation to compare the
solution of the algorithm obtained from an ideal quantum logic circuit with the solution based
on SFG gates. Thus our investigation provides guidelines for the development and design of a
prototype solid state quantum computer based on SFG gates.

2. SFG gates: the three-spin system

We consider three particles A, B and C in a magnetic field B. Particles A and B are deep donors,
whose electron spins carry the qubits. Particle C, the control atom, provides the control electron
which, when excited by an optical pulse, mediates the interaction of A and B. As shown in [3],
this system can be analysed assuming the dominant interaction to be exchange between the
control and qubit electrons, represented by effective Heisenberg interactions of strength JA and
JB, and can be described by the Hamiltonian

H = |g〉 {
BAσAz + BBσBz + B0

CσCz
} 〈g|

+ |e〉 {JAσA · σC + JBσB · σC + BAσAz + BBσBz + BCσCz + ε} 〈e|
+ |e〉 V (t) cos (ωt + φ) 〈g| + |g〉 V (t) cos (ωt + φ) 〈e| . (1)
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Here |g〉 and |e〉, respectively, denote the ground and excited state of the control atom. There is
a magnetic field B, so there are Zeeman energies involvingµA andµB as the magnetic moments
of the qubit spins, while µ0

C is the ground state magnetic moment of the control particle and
µC is its excited state magnetic moment. In expression (1), these quantities have been used to
define

BK = − |B|µK (K = A,B,C) B0
C = − |B|µ0

C. (2)

The σi are the Pauli spin matrices. The ground and excited states are separated by the excitation
energy ε, and coupled by the oscillating part of the Hamiltonian, corresponding to the optical
excitation, V (t) cos(ωt + φ). The interaction is initiated by the excitation of the control
electron through an optical pulse and terminated, but not destroyed, by the transmission of
a second optical pulse after a time T . Note that the magnetic field B is the same for both qubits
and control. Typical spacings of the dopants would be a few tens of nanometres in silicon, far
less than distances on which it is easy to apply unique fields for each. There will be fields due
to other magnetic species present. Following [3], all our analysis here will be made for the
symmetric case JA = JB = J and BA = BB = B . It is possible to generalize the results to less
symmetric cases.

An important issue for the design of an SFG based quantum computer concerns selectivity,
i.e. each gate must be individually addressable within a quantum register of SFG gates. Since
gates are addressed through optical pulses, the frequencies ω of the excitation and de-excitation
pulses for each gate must be different. As described in [1], this is possible by creating
disordered arrangements of the deep donors, since disorder will make the excitation energies
vary from one pair A, B to another because of the different spacings and orientations relative
to the host crystallographic axes.

2.1. Gates that leave the control electron unentangled

Of all quantum logic gates, described by the unitary transformation

U = e−iH T (3)

we are especially interested in those in which the control electron remains completely
unentangled from the two qubits at the end of the time interval T .

As demonstrated in [3], there are many such solutions, and these solutions can be described
by means of two integers M and N . Also, since we are analysing transformations which
leave the control electron unentangled from the qubits, we can describe the quantum gates
by considering only the computational space spanned by the qubits, neglecting the control
electron. Under these assumptions, the two-qubit quantum logic gates implementable by SFG
gates are

U+ (M, N ) = ei(J−B)T








e−i[(3− f )J+2B]T 0 0 0

0

[
(−1)M +e−i(1− f )J T

]

2

[
(−1)M −e−i(1− f )J T

]

2 0

0

[
(−1)M −e−i(1− f )J T

]

2

[
(−1)M +e−i(1− f )J T

]

2 0
0 0 0 e2iBT (−1)N








U− (M, N ) = ei(J+B)T









e−2iBT (−1)M 0 0 0

0

[
(−1)N +e−i(1+ f )J T

]

2

[
(−1)N −e−i(1+ f )J T

]

2 0

0

[
(−1)N −e−i(1+ f )J T

]

2

[
(−1)N +e−i(1+ f )J T

]

2 0

0 0 0 e−i[(3+ f )J−2B]T









(4)

where U+ and U− are transformations which are active depending on whether the control
electron starts in the spin-up or spin-down state and where we can link the physical parameters
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B, J, T to parameters M , N and f by these equations:

B

J
= f

f = − M2 + N2

M2 − N2
±

√(
M2 + N2

M2 − N2

)2

− 9

J T = Mπ
√
( f − 1)2 + 8

= Nπ
√
(1 + f )2 + 8

BT = Mπ
√(

1 − 1
f

)2 + 8
f 2

= Nπ
√(

1 + 1
f

)2 + 8
f 2

.

(5)

The exchange interaction J depends on the distribution of the particles and decreases with
increasing distance between the qubits and the control atoms. The distance between particles
has to be large enough to avoid ground-state interactions between the qubits. As shown in [3],
this requirement leads to distances between qubits and control atoms of about 13–17 nm and
corresponding values of the exchange interaction J around 1–20 GHz. f needs to be real
and T positive, which implies M and N to be positive and to be bound by the following
constraints:

M√
2

� N �
√

2M (6)

for solutions of f with the positive root, and
{

M√
2

� N �
√

2M

}
∩ {M �= N} (7)

for solutions of f with the negative root, as, in this case, f diverges for M = N . As described
in [3], typically, J T ∼ 1000, which leads, as will be shown later, to values of M and N of a
few hundred to a few thousand.

Another parameter which is fundamental for the description of a realistic SFG gate is the
pulse length τ of the optical exciting and de-exciting pulses. The pulse length τ needs to be
short enough to have a bandwidth which covers all spin components of the excited state; with
realistic values, the pulse length is expected to be of the order of a few ps [3]. Hence, while
the strength of the exchange interaction J depends on the relative geometrical position of the
particles A, B and C, and represents, therefore, a fixed parameter of the experimental set-up,
the control parameters of the gate are the magnetic field B and the pulse character, given by the
interval T between pulses and the pulse length τ . As mentioned above, for a chip comprising
many SFG gates, the magnetic field B is a parameter which will have to be the same for each
gate, apart from the effects of other magnetic species present.

3. The refined Deutsch–Jozsa algorithm

The Deutsch problem addresses the following scenario.
A function f (x) which takes as input a variable x expressed on n bits is assumed. If the

output, a single bit, is always 0 or always 1, independent of the value of x , then the function
is called constant. If the output is 0 for exactly half of all possible input values and 1 for the
remaining ones, then the function is called balanced. Suppose further that an oracle makes
a random selection between constant or balanced functions f (x). How many queries of the
function are necessary to determine the type of function (constant or balanced) the oracle has
chosen?
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Figure 2. ‘Wire-diagram’ representation of the quantum logic circuit for the refined Deutsch–Jozsa
algorithm. The diagram is to be read from left to right and each wire represents a qubit.

A quantum circuit which solves the Deutsch problem is shown in figure 2 [4]. This
solution is known as the refined Deutsch–Jozsa algorithm [4, 9] since it requires a quantum
register of n qubits whereas the original version presented by Deutsch and Jozsa [5, 6] required
n + 1. The representation of the quantum circuit given in figure 2 is known as the ‘wire-
diagram’ of the circuit [10]. This representation is to be read from left to right, hence, the left
side of the diagram represents the input of the quantum circuit, which, in this case, starts with
each qubit being in the state |0〉. One can follow the quantum logic operations applied to a
qubit by analysing the wire which starts from its initial state. Quantum operations which only
change the state of a single qubit are symbolized by a box centred on a single wire with a code
characterizing the type of transformation. Similarly, a multi-qubit operation is described by a
box connecting the two or more qubits involved in the quantum transformation.

From figure 2, for example, one can see that the first operation applied to each qubit is a
Hadamard gate, i.e. a single-qubit operation described mathematically by

H = 1√
2

[
1 1
1 −1

]
. (8)

Then, the quantum transformation U f = (−1) f (x) is applied to the whole quantum register.
Finally, the output state |ψout〉 is obtained applying a final Hadamard gate H to each qubit. A
measurement on the output register of the circuit shown in figure 2 gives all 0s if the oracle had
chosen a constant function, and gives at least a 1 for the case of a balanced function. Hence,
applying U f once and with one single measurement only, it is possible to determine the type
of function chosen by the oracle, whereas with a classical computer one would need 2n−1 + 1
queries of the function f (x) in the worst case.

The core of the of the Deutsch–Jozsa algorithm is in the implementation of the unitary
transformation U f = (−1) f (x). Because of its simplicity and its flexibility (it can be
implemented for any number of qubits) the Deutsch–Jozsa algorithm has been used for many
experimental demonstrations of quantum computers [7–9].

As described in [4] it is a good candidate to test a quantum computer prototype since it
exploits the three important features of quantum computation: superposition, interference and
entanglement, although entanglement is created between the qubits only for n � 3 and for
some specific balanced functions.

In [9], quantum logic circuits for a three-qubit NMR quantum computer are reported.
In particular, [9] gives the gate sequences for implementing the unitary transformations
corresponding to all 35 nontrivial balanced functions. There are 70 balanced functions in total;
however, since the quantum transformations corresponding to f (x) and f̄ (x) = 1 − f (x) only
differ by a global phase-shift, they are described by the same circuit [10], hence the total of 35
nontrivial quantum circuits. The sequences are subdivided in groups depending on how many
two-qubit gates they require for their implementation. A maximum of three two-qubit gates
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is necessary to implement any of the 35 functions. For example, let us consider the following
balanced function, which requires three two-qubit gates:

f (000) = 0 f (001) = 0

f (010) = 0 f (011) = 1

f (100) = 0 f (101) = 1

f (110) = 1 f (111) = 1.

(9)

Using the notation described in [9], we label this function using the following method: first, the
outputs of the function are ordered with respect to the ascending binary values of their inputs.
For the function described by expression (9), we obtain the string 00010111. The function is
labelled using the hexadecimal value corresponding to the binary string. As the corresponding
hexadecimal value of our string is 17, we label this specific balanced function f17.

As shown in [9], the following gate sequence implements f17:

U f17 = Rz1 (π) J21

(π
2

)
J10

(π
2

)
J20

(
−π

2

)
(10)

where Rzi (ϑ) represents a single-qubit operation on qubit i which rotates a spin of ϑ degrees
around the z-axis in the Bloch-sphere representation [10]. Ji j(ϑ) describes the two-qubit
interaction between qubits i and j and is given mathematically by

Ji j (ϑ) = e−i ϑ2 σzi ·σz j (11)

with σzi being the Pauli z matrix for the i th qubit expressed in the computational space spanned
by the qubits.

We now insert the gate sequence of expression (10) in the circuit described in figure 2.
This gives for the state of the quantum register at the end of the whole gate sequence, but prior
to the measurement:

|ψout−ideal〉 = −0.3536 ×













0
1 + i
1 + i

0
1 + i

0
0

−(1 + i)













. (12)

The notation used is such that the first element of the column vector indicates the probability
amplitude for the state |0〉|0〉|0〉, the second element corresponds to the state |0〉|0〉|1〉 and
continues in ascending binary order up to the last probability amplitude which corresponds to
the state |1〉|1〉|1〉. The subscript ‘ideal’ indicates that equation (12) assumes ideal gates. Real
gates are subject to constraints, and we shall use these results in comparing them with the ideal
gates. It is important to note that the output state given in expression (12) correctly solves the
Deutsch problem since, as summarized above, the implemented function is balanced and only
states with at least one qubit in the |1〉-state have a non-zero probability of being measured.

4. Solving the algorithm using SFG gates

It is helpful to relate the quantum logic gates of the last section to standard gates, and
specifically to the controlled phase gate and to operations on single qubits. Both Ji j(

π
2 ) and
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J1

J2

J3

Qubit 0

Qubit 2

Qubit 1

Figure 3. Three-qubit SFG gate system.

Ji j(−π
2 ) are quantum logic gates which are locally equivalent [11] to the controlled phase gate

UC−PHASE:

UC−PHASE =





1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1




 . (13)

This means that it is possible to express Ji j(
π
2 ) or Ji j(−π

2 ) through UC−PHASE and some single-
qubit operations.

This has an important consequence. Consider a three-qubit chip on which it is possible to
implement only SFG gates which are locally equivalent to the controlled-phase gate UC−PHASE.
We could then adapt the circuit discussed above to the case of an SFG gate-based quantum
computer, and this could be done without increasing the total number of two-qubit quantum
logic gates.

We assume the availability of a chip with a convenient distribution of qubits and control
atoms for a three-qubit quantum register. The situation is schematically shown in figure 3,
where control atoms have been omitted for simplicity.

As summarized in section 2.1, one of the parameters which characterizes SFG gates is
the strength of the exchange interaction J of the qubit–control atom–qubit symmetric three-
particle system. The assumption of having each pair of qubits symmetrically distributed about
its control atom simplifies the analysis, but is not essential. In figure 3, we distinguish the
three different SFG gates by labelling them with the strength of the exchange interaction Ji

(i = 1, 2, 3) of the three different qubit–control atom–qubit systems. Since the quantum
register has random qubits, the values of Ji will be different, and the excitation energies for
the control electrons for each gate will be different [1].

Let us take the gate characterized by J3 as a reference. As described in [3], a controlled
phase gate can be implemented by adopting parameters M = 1584 and N = 2177. For these
parameter values one obtains f = 4.5. Taking numbers consistent with the ones used in [3],
let us consider J3 = 16 GHz. Since

f = B

J
(14)

and since we have fixed J3, we can compute the magnetic field term B necessary to obtain the
desired gate. In this case, the magnetic field term is B = 72 GHz. This magnetic field term is
now experienced by the whole system; in particular, it will be the same for the other SFG gates
with their different values of Ji .

We can now determine which values of Ji would approximate a controlled-phase gate to
a desired precision. To do this, we evaluated numerically the strength interaction J and the
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Table 1. Parameters for phase gates for B = 72 GHz, 	ci = ±0.01.

M N f J

1458 1589 22.91 3.1428
1436 1566 22.74 3.1663

815 904 18.89 3.8116
797 885 18.684 3.8535

1936 2165 17.448 4.1265
1521 1716 16.101 4.4717
2133 2457 13.574 5.3042
1873 2170 12.994 5.5412

637 746 12.018 5.991
1214 1436 11.218 6.418
1509 1788 11.09 6.4922
1171 1406 10.172 7.078
1897 2297 9.6475 7.4631
1597 1998 7.9437 9.0638
1931 2429 7.7005 9.3501
1295 1657 6.9897 10.301

473 624 5.8691 12.268
1419 1872 5.8691 12.268
1525 2034 5.4983 13.095
1595 2137 5.348 13.463
1146 1540 5.2495 13.716
1732 2380 4.5059 15.979
1584 2177 4.5 16

437 601 4.477 16.082
1615 2274 3.4977 20.585

679 934 2.0133 35.762
1553 2136 2.0116 35.792

437 601 2.0103 35.816
1584 2177 2 36

entangling characteristics of all SFG gates for M and N values lying between 1 and 2500 and
B = 72 GHz. In other words, we analysed which SFG gates, for the magnetic field term
evaluated above, have c1, c2 and c3 coefficients described in [11] with values in the vicinity
of those expected for a controlled phase gate within a given tolerance ±	ci . Table 1 shows
which other combinations of parameters approximate the phase gate given by M = 1584
and N = 2177.

From table 1 it can be seen that there are many combinations which allow us to implement
controlled-phase gates. Selecting out of this set values of Ji similar to the ones shown in [3], a
possible set of SFG gates implementing controlled-phase gates for a three-qubit system could
be the following.

SFG gate 1: between qubit 0 and 2. J1 = 3.8116 GHz, M = 815 and N = 904,
J T = 141.3636, T1 = 37.088 ns.

SFG gate 2: between qubit 0 and 1. J2 = 13.463 GHz, M = 1595 and N = 2137,
J T = 966.0433, T2 = 71.752 ns.

SFG gate 3: between qubit 1 and 2. J3 = 16 GHz, M = 1584 and N = 2177, J T =
1105.84, T3 = 69.115 ns.
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Qubit 0

Qubit 1

Qubit 2

Figure 4. Total circuit for the refined Deutsch–Jozsa algorithm with a three-qubit SFG quantum
computer for the case of function f17.

As shown in [10], Ji j (±π
2 ) (note that this transformation should not be confused with the

interaction strength J and Ji ) can be expressed through UC−PHASE with the following circuits:

Ji j

(
−π

2

)
= P

(π
4

)
UC−PHASEi j Rzi

(
−π

2

)
Rz j

(
−π

2

)

Ji j

(π
2

)
= P

(
−π

4

)
UC−PHASEi j Rzi

(π
2

)
Rz j

(π
2

) (15)

where P(ϑ) = e−iϑ is simply a constant phase shift and the subscripts i and j indicate to
which qubits the transformations are applied. Using expressions (10), (15) and figure 2, the
complete circuit which solves the refined Deutsch–Jozsa algorithm using SFG gates for the
case of function f17 is shown in figure 4.

Again, the circuit shown in figure 4 is given in the ‘wire-diagram’ representation.
Compared to figure 2, the quantum operation U f has been decomposed into a sequence of
quantum logic gates involving only single-qubit operations and two-qubit SFG gates which
implement the transformation U f17 . Each SFG gate connects vertically two qubits and is
characterized by the couple of integers M and N which define its parameters, as described
through the equations given in (5). Single-qubit operations are symbolized by a box centred on
a single wire and are either Hadamard gates H , rotations around the z-axis Rzi (ϑ) or constant
phase-shifts P(ϑ).

Simulating the performance of the circuit, which means to apply to the quantum register
starting in the state |ψin〉 all the transformations shown in figure 4, gives

|ψout−SFG〉 = −0.3536 ×












−0.01 + i0.01
1 + i

1 + i0.99
0.01 − i0.01
0.99 + i1.01

−0.02 + i0.02
0

−(1 + i)












. (16)

The two output states |ψout−ideal〉 and |ψout−SFG〉 can be compared by computing the fidelity,
defined as [12]

fidelity = |〈ψideal|ψerr〉|2 (17)

which is unity for parallel states and zero for orthogonal ones. Note that, while the output
states given in expressions (12) and (16) have been truncated for simplicity, the fidelity has
been evaluated with the non-truncated version of the output states. The final result is

|〈ψout−ideal|ψout−SFG〉|2 = 0.999 834. (18)
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This shows that the output state obtained through the SFG controlled phase gates is a rather
precise approximation of the ones obtained using the ideal quantum logic gates. The SFG
quantum circuit requires six optical pulses for the three two-qubit interactions; it additionally
needs two single-qubit operations and two constant phase shifts for each two-qubit interaction
in order to have a controlled phase gate, plus a final single qubit operation for implementing
U f and the six single qubit operations for the Hadamard gates at the beginning and end of the
algorithm. This gives a total of six optical pulses, 13 single qubit operations and six constant
phase shifts.

Finally, we can obtain an estimate of the total computational time by summing the time
intervals in which the two-qubit gates are active. Since the circuit requires one two-qubit gate
between each pair of qubits, the total time is

TCOMP = T1 + T3 + T3 = 37.088 ns + 71.752 ns + 69.115 ns = 177.36 ns. (19)

Just to get an idea about the impact of decoherence, let us compare this result with some recently
published data about decoherence in silicon systems with qubits carried by the electron spins
of phosphorus atoms [13]. This is not the only possible system; another candidate which might
have promising decoherence times is bismuth-doped silicon [3]. As shown in [13], in the case of
phosphorus-doped silicon, one can expect decoherence times of the order of some milliseconds.
Since the estimated computational time TCOMP is several orders of magnitude smaller than this,
we can expect our circuit to work in a regime in which the impact of decoherence is tolerable, as
described by the third of di Vincenzo’s requirements for quantum computation [14]. This result,
combined with the high fidelity with which our circuit approximates the ideal solution of the
Deutsch–Jozsa algorithm, confirms how quantum information processing based on solid-state
systems seems increasingly feasible.

Clearly, the impact of decoherence requires further studies and understanding. Details of
the main decoherence mechanisms which could affect the qubit–control atom–qubit system can
be found in [3]. In terms of the impact of decoherence on the final result of the computation,
it will be necessary to investigate what kind of influence decoherence can have on the gate
dynamics and, therefore, on the choice of the gate parameters T , M and N , in the case of more
complex and time consuming algorithms. In SFG gate-based systems decoherence acts both on
the qubits and on the control electrons. When qubits are affected by decoherence, then the state
of the quantum register is altered, which corresponds to a perturbation of the information which
needs to be processed. Further, since control electrons are responsible for the implementation of
the two-qubit quantum logic gates, if their state is perturbed by decoherence, then the quantum
transformations one wants to implement will be perturbed as well. In both cases, errors are
introduced in the computation. A detailed analysis of this phenomenon will, therefore, be the
object of future studies.

5. Conclusions

We analysed the implementation of a three-qubit refined Deutsch–Jozsa algorithm for a
quantum computer based on SFG gates. We showed that an accurate solution can be obtained
by using SFG gates to simulate controlled-phase gates between all pairs of qubits. In a real
prototype device this ideal situation is unlikely to happen as qubits and control atoms will be
distributed randomly. However, the parameters presented in table 1 show that there is some
degree of freedom, and it should be possible to come close to such an ideal scenario. In the
worst case, this would mean that we could expect an increase of a factor of three in the total
number of two-qubit quantum gates [15].
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